The paper presents the general LL (Local Level) model with time-varying conditional variance, recently proposed by Stock and Watson. The main purpose is to present the Bayesian estimation and model comparison of different local level models with Normal GARCH, Student-t GARCH and SV disturbances. We are particularly interested how the different specifications of the conditional variance affect the explanatory power of a set of competing models. We apply the LL models to logarithmic transformations of the original prices of Żywiec, Polish company listed on the WSE. The model selection and posterior estimates provide strong evidence in favor of a model with SV disturbances in the core component, and the transitory component.
Local level model, Bayesian Model Comparison, Conditional Heteroscedasticity
[1] Bos C., [2001], Time Varying Parameter Models for Inflation and Exchange Rates, WebDOC, http://citeseer.ist.psu.edu/479611.html, (2.04.2008).
[2] Bos C., Mahieu R.J., Dijk van H.K., [2000], Daily exchange rate behaviour and hedging of currency risk, „Journal of Applied Econometrics”, 15, 6, 671-696.
[3] Doman M., Doman R., [2004], Ekonometryczne modelowanie dynamiki polskiego rynku finansowego, Wyd. AE w Poznaniu, Poznań.
[4] Durbin J., Koopman S.J., [2001], Time Series Analysis by State Space Methods, Oxford University Press, Oxford.
[5] Fiszeder P., [2001], Jednorównaniowe modele GARCH – analiza procesów zachodzących na GPW w Warszawie, materiały na V Ogólnopolskie Seminarium Naukowe pt.: Dynamiczne modele ekonometryczne, Toruń, 221-232.
[6] Geweke J., Whiteman Ch., [2006], Bayesian Forecasting, Handbook of Economic Forecasting, 1, red. Elliott G., Granger C.W.J., Timmermann A., 3-78.
[7] Grassi S., Proietti T., [2008], Has the volatility of U.S. inflation changed and how?, wersja niepublikowana.
[8] Harvey A.C., [1989], Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge University Press, Cambridge.
[9] Harvey A.C., Ruiz E., Sentana E., [1992], Unobserved component time series with ARCH disturbances, „Journal of Econometrics”, 52, 129-157.
[10] Kim C.J., Nelson C.R., [1999], State-Space Models with Regime Switching, MIT Press.
[11] Koop G., [2003], Bayesian Econometrics, John Wiley & Sons.
[12] Koop G., van Dijk H.K., [2000], Testing for integration using evolving trend and seasonals models: A Bayesian approach, „Journal of Econometrics”, 97, 2, 261-291.
[13] Muth J.F., [1960], Optimal properties of exponentially weighted forecasts, „Journal of the American Statistical Association”, 55, 299-306.
[14] Newton M.A., Raftery A.E., [1994], Approximate Bayesian inference by the weighted likelihood bootstrap (with discussion), „Journal of the Royal Statistical Society” B, 56, 3-48.
[15] Osiewalski J., [1991], Bayesowska estymacja i predykcja dla jednorównaniowych modeli ekonometrycznych, Wyd. AE w Krakowie, Kraków.
[16] Osiewalski J., [2001], Ekonometria bayesowska w zastosowaniach, Wyd. AE w Krakowie, Kraków.
[17] Osiewalski J., Pajor A., Pipień M., [2004], Bayesowskie modelowanie i prognozowanie indeksu WIG z wykorzystaniem procesów GARCH i SV, XX Seminarium Ekonometryczne im. Profesora Zbigniewa Pawłowskiego, red. Zeliaś, A., Wyd. AE w Krakowie, Kraków, s. 17-39.
[18] Osiewalski J., Pipień M., [1999], Bayesowskie testowanie modeli GARCH i IGARCH, „Przegląd Statystyczny”, 46, 1, 5-23.
[19] Pajor A., [2003], Procesy zmienności stochastycznej SV w bayesowskiej analizie finansowych szeregów czasowych, Wyd. AE w Krakowie, Kraków.
[20] Pellegrini S., Ruiz E., Espasa A., [2007], The relationship between ARIMA-GARCH and unobserved component models with GARCH disturbances, „Statistics and Econometrics Series”, 7-27.
[21] Pellegrini S., Ruiz E., Espasa A., [2008], ARIMA-GARCH and unobserved component models with GARCH disturbances: Are their prediction intervals different?, wersja niepublikowana, https://editorialexpress.com/cgi-bin/conference/download.cgi?db_name=simposio2008&paper_id=304, (20.04.2010).
[22] Piłatowska M., [2003], Modelowanie niestacjonarnych procesów ekonomicznych, Studium metodologiczne, Wyd. UMK w Toruniu, Toruń.
[23] Stock J.H., Watson M.W., [2007], Why has U.S. inflation become harder to forecast?, „Journal of Money”, Credit, and Banking, 39, 3-33.
[24] West M., Harrison J., [1989], Bayesian Forecasting and Dynamic Models, Springer.